
 

 

 

  
 

Abstract—This paper describes the implementation of ARP-

Path (a.k.a. FastPath) bridges, a recently proposed concept for 

low latency bridges, in Linux/Soekris and OpenFlow/NetFPGA 

platforms. These ARP-based Ethernet Switches rely on the race 

between the replicas of a standard ARP Request packet flooded 

over all links, to discover the minimum latency path to the 

destination host, complemented in the opposite direction by the 

ARP Reply packet directed to the source host. Implementations 

show that the protocol is loop free, does not block links, is fully 

transparent to hosts and neither needs a spanning tree protocol 

to prevent loops nor a link state protocol to obtain low latency 

paths. Implementations in Linux and OpenFlow on NetFPGA 

show inherent robustness and fast reconfiguration. Previous 

simulations showed a superior performance (throughput and 

delay) than the Spanning Tree Protocol and similar to shortest 

path routing, with lower complexity.  

 

Index Terms—Ethernet, Routing bridges, Shortest Path 

Bridges, Spanning Tree  

I. INTRODUCTION 

thernet switched networks offer important advantages in 

terms of price/performance ratio, compatibility and simple 

configuration without the need of IP addresses administration. 

But the spanning tree protocol (STP) [1] limits the 

performance and size of Ethernet networks.  Current standards 

proposals, such as Shortest Path Bridges (SPB) [2] and 

Routing Bridges [3] rely on a link-state routing protocol, 

which operates at layer two, to obtain shortest path routes and 

build trees rooted at bridges. They have significant complexity 

both in terms of computation and control message exchange 

and need additional loop control mechanisms. A simple, zero 

configuration protocol may be effective in data center and 

campus networks to replace spanning tree when  the 

complexities of the above mentioned protocols are not 

justified and high performance at low cost is the priority.  

In this paper, we describe the implementation of ARP-Path 

Ethernet Switches in Linux/Soekris and Openflow/NetFPGA 

platforms, recently proposed in [4] as Fast-Path. ARP-Path is a 

simple, zero-configuration, minimum latency protocol suitable 

for metro, campus, enterprise, and data center networks that 

enables the use of all available links without routing 

computations or a spanning tree. Experimental results show 

robustness, fast reconfiguration and low latency.   

 
 

II. ARP-PATH PROTOCOL 

A.  ARP-Path Set up  

The ARP-Path protocol relies on the race between a flooded 

ARP request to establish the fastest path.  

1) ARP-Path Discovery (ARP Request).Fig.1  

 When host S wants to send an IP packet over Ethernet to 

host D by IP address, it needs D’s MAC address. If this 

mapping of IP address to MAC address is not in its ARP 

cache, S broadcasts an ARP Request for D’s MAC address 

(shown as B in fig.1a). Ingress bridge 2 receives the frame 

from S and temporarily associates (locks) the global MAC 

address of S to the ingress port. Further broadcast frames from 

S arriving to other input ports of bridge 2 will be discarded as 

late frames from that source. S’s address is now in a locked 

state and bridge 2 broadcasts B on all other ports (fig.1 a). 

Bridges 1 and 3 behave similarly, locking S’s address to B’s 

ingress port and broadcasting B over all other ports, thus 

sending duplicate copies to each other. Because these frames 

arrive at a different port from the one already locked to S, they 

are discarded (fig.1 b). In turn, bridges 4 and 5 process B the 

same way finally delivering B to the destination host D. There 

is now a chain of bridges, each with a port locked to S’s MAC 

address forming a temporary path between S and D (fig.1 c).  

 
Figure 1. ARP-Path discovery from host S to host D. The small bubbles on 

the links show which switch port locked S’s address. 

2) ARP-Path Confirmation (ARP Reply)  

The path is confirmed in the reverse direction (i.e. from D 

to S) when Host D sends the ARP Reply to host S in a unicast 

frame U that traverses the same path and confirms the learned 

B

2 3 5

1 4

S D

a)

S
B

2 3 5

1 4

S D

b)

S

B

S

S
B B

2 3 5

1 4

S D

c)

S

S

S
B

S

S

S Port temporarily locked to S B ARP request from S

B Late copy of B (discarded)

  Implementation of ARP-Path Low Latency 

Bridges in Linux and OpenFlow/NetFPGA 

Guillermo Ibáñez1, Bart De Schuymer, Jad Naous2, Diego Rivera1, Elisa Rojas1, Juan A. Carral1 

1 University of Alcala,, Madrid Spain  2 Stanford University, Stanford, CA USA    

E



 

 

 

addresses. The confirmation mechanism ensures that the ARP-

Path is symmetric. Path symmetry is required to prevent path 

oscillations. Specific priority mechanisms are used to ensure 

the uniqueness of the confirmed path in special situations like 

simultaneous ARPs exchanged by two hosts in opposite 

directions.  

3) Path Repair 

The method for path repair when an unicast frame arrives at 

a bridge where the destination MAC address has expired is 

described in detail in [4]. It uses the Path_Fail, Path_Request 

and Path_Confirm packets between the affected bridges to 

restore the complete path between source and destination 

bridges by emulating the ARP exchange. Simpler methods, 

relaying on direct broadcast of ARP Request from the “failed” 

switch in all directions, have also been tested and they also 

work in some topologies. 

Notice that a MAC address may not be in the learning table 

for several reasons: no ARP was emitted to create the path, the 

entry was not refreshed and it expired, the link associated to 

the learnt port failed or even because the whole switch went 

down (and therefore, its table). In every of these cases, the 

repair method applied is the same. 

B. Advantages 

The protocol has several important advantages over other 

protocols that that explicitly build routes, namely: minimum 

latency (the selected path is the minimum latency path as 

found by the ARP Request message), zero configuration          

(there is no need to configure anything on hosts and bridges) 

and simplicity (functions performed at switches are MAC 

address learning and, optionally, ARP proxying to reduce 

broadcasts).  

III. ARP-PATH IMPLEMENTATIONS 

ARP-Path bridges have been successfully and successively 

implemented in several platforms. First, a Linux 

implementation with 100 Mbit/s links was performed to verify 

protocol correctness, robustness and compatibility in operation 

with existing networks. Afterwards, an implementation 

providing high performance and wide applicability in 

OpenFlow/NetFPGA was started.  

The objective of the implementations was to verify the 

robustness of the ARP-Path transparent bridge concept at 100 

Mbit/s and 1 Gbit/s wired networks, using all  infrastructure 

links, without the spanning tree protocol or any ancillary 

routing protocol operating at layer two or three. Test networks 

were, respectively, a small 100 Mbit/s switched network of 3 

ARP-Path Linux boxes (Soekris boards) and a high 

performance 1 Gbit/s network with four switches made with 

NetFPGA boards running OpenFlow, with an external 

controller.  

Not only compatibility with existing campus networks have 

been shown, but also fast reconfiguration after link failure and 

absence of broadcast storms or other infinite loops. There 

were no broadcast loops, even when two ports of the same 

bridge were connected to each other. The ARP-Path bridges 

network mesh is directly connected to hosts on one side and to 

the campus network via one port on the other to avoid 

broadcast loops created by the standard bridges reinjecting 

frames to the ARP Path network.    

Note that mesh topologies were selected in order to show 

how efficient this protocol is at avoiding loops, although the 

protocol could be used in bigger topologies. In fact, the 

protocol has previously been tested by using software 

simulations over Data Center topologies with two levels and 

up to 250 hosts connected. Also, these mesh topologies were 

the more complex ones with the hardware resources that were 

available (in this case 3 Soekris boards and 4 NetFPGA cards), 

to show the robustness of the protocol. 

A. 100 Mbit/s.  ARP Path Switches Linux Implementation  

The first proof-of-concept of the ARP-Path bridge protocol 

has been implemented on a Linux 2.6 kernel and operates in 

kernel and user space by using ebtables [10]. We decided to 

use existing Linux kernel functionality so that no changes to 

the Linux kernel had to be made. This makes debugging the 

application easier and allows the application to run on any 

fairly recent Linux distribution. The disadvantage is, of 

course, loss of throughput due to extra context switches and 

packet buffering. The requirements on the functionality of the 

Linux platform are only minor: 

- brctl: tool to setup the bridge 

- ifconfig: for bringing up the bridge device 

- ebtables: tool for Ethernet bridge filtering 

- a recent Linux kernel with bridging and ebtables support 

(our code was tested on kernel version 2.6.31-14) 

The implementation uses the Linux bridge functionality in 

hub mode, which is accomplished by setting the ageing time 

and forwarding delay of the bridge to zero. The decision 

whether to forward a packet from one bridge port to another 

bridge port is done by using ebtables filtering rules. The 

ebtables program is used to configure the Ethernet bridge 

packet filter that runs in the kernel. Setting up the ebtables 

filtering rules is done by a user space program that inspects all 

relevant traffic. To copy the packets from the kernel to the 

user space program, we use ebtables' ulog target, which uses 

the netlink infrastructure as communication channel. 

Excessive traffic will easily overload netlink communication, 

leading to the message "recvmsg: No buffer space available". 

Tuning the value in /proc/sys/net/core/rmem_max did not 

help. To reduce the impact of this bottleneck as much as 

possible, the ebtables rules were adapted in such a way that 

the user space program only receives messages that cannot yet 

be processed by the active ebtables rules. The following 

optimisations were done to reduce the number of packets sent 

to user space in order to prevent overloading the netlink 

buffer: 

- Traffic of a confirmed path is handled completely by 

ebtables rules, without further inspection by the user space 

program. To be able to do this, the ebtables FORWARD chain 

was used for all rules. This is needed because a confirmed 



 

 

 

path is partly identified by an input and output bridge port. 

The packet counters of the ebtables rules are periodically 

parsed in order to be able to update the time

active confirmed paths and remove paths that have timed out.

- In the ARP-Path Repair situation, where the application 

itself has sent an ARP request and is waiting for the ARP 

reply, subsequent packets that would trigger

request are rate limited. This is done using the 

watcher. This has as side effect that some packets may be 

dropped if the traffic is dense. In practise, we experienced this 

scenario with unicast video traffic for a confirmed path

had timed out, while the streaming server's ARP cache entry 

hadn't expired yet. For most scenarios, multiple 

have to be added at once. Ebtables provide

to enable atomic insertion of multiple rules:

- Create a new chain and add all the necessary rules one

one to the chain. Finally, add a rule to an appropriate other 

chain which jumps to the previously created chain.

- Add the rules one-by-one to a user space version of the 

ebtables filter table, using the atomic file

use the atomic commit functionality to atomically

complete table to the kernel. A disadvantage of this 

mechanism is that the packet counters of existing rules are 

reset after the atomic commit.  

Link failure detection is implemented in a separate thread 

that listens on a NETLINK_ROUTE socket of the NETLINK 

address family. A change in an interface's link state is evented

using netlink messages of type RTM_NEWLINK and 

RTM_DELLINK. Both bringing a bridge port

ifconfig and unplugging a network cable are evented by this 

mechanism. When link failure is detected for a bridge port, all 

associations of remote MAC addresses to

port are removed and the ebtables filter rules are updated.

Functional testing during development of the 

protocol was done using virtualization. This enables creating 

virtual networks of various setups without requiring

additional hardware infrastructure. We chose to use User

Mode Linux, which allows running a complete custom

Linux kernel as a program on the host. Using some basic

scripts to automatically create a virtual test network, provides 

a fast and easy way to recreate a network test environment. 

We did notice, however, that the UML clients had a

to crash when put under relatively heavy network load. 

Performance testing was done on real networks.

Implementing the protocol in user space allowed for fast 

prototyping, especially since much existing kernel 

functionality could be reused. However, using 

communication channel for passing network packets between 

kernel and user space proved to be a bottleneck

performance in a real-world scenario. However, we are 

confident that when the application would be rewritten as a 

Linux kernel module, the obtained throughput performance in 

normal scenarios would be comparable to the standard Linux 

bridge implementation.  

The test network scenario is shown in 

Soekris Linux boxes operate as three ARP

path is partly identified by an input and output bridge port. 

rules are periodically 

parsed in order to be able to update the time out values of 

active confirmed paths and remove paths that have timed out.  

Path Repair situation, where the application 

and is waiting for the ARP 

reply, subsequent packets that would trigger the same ARP 

request are rate limited. This is done using the ebtables limit 

This has as side effect that some packets may be 

ise, we experienced this 

scenario with unicast video traffic for a confirmed path that 

had timed out, while the streaming server's ARP cache entry 

For most scenarios, multiple ebtables rules 

provides two mechanisms 

to enable atomic insertion of multiple rules: 

Create a new chain and add all the necessary rules one-by-

add a rule to an appropriate other 

chain which jumps to the previously created chain. 

space version of the 

file functionality. Then 

functionality to atomically commit the 

complete table to the kernel. A disadvantage of this 

t counters of existing rules are 

Link failure detection is implemented in a separate thread 

socket of the NETLINK 

address family. A change in an interface's link state is evented 

messages of type RTM_NEWLINK and 

RTM_DELLINK. Both bringing a bridge port down using 

and unplugging a network cable are evented by this 

link failure is detected for a bridge port, all 

addresses to the specific bridge 

filter rules are updated. 

Functional testing during development of the ARP Path 

virtualization. This enables creating 

virtual networks of various setups without requiring any 

additional hardware infrastructure. We chose to use User-

running a complete custom-built 

Linux kernel as a program on the host. Using some basic 

scripts to automatically create a virtual test network, provides 

recreate a network test environment. 

We did notice, however, that the UML clients had a tendency 

to crash when put under relatively heavy network load. 

on real networks. 

space allowed for fast 

much existing kernel 

functionality could be reused. However, using netlink as a 

channel for passing network packets between 

e a bottleneck for 

world scenario. However, we are 

would be rewritten as a 

Linux kernel module, the obtained throughput performance in 

would be comparable to the standard Linux 

scenario is shown in figs. 3 and 4. Three 

as three ARP-Path switches fully 

connected in a triangle. Two of 

to standard hosts (H, S), and the third 

the Internet through a wired Fast Ethernet 

The path establishment between H and S is continuously 

monitored with repetitive pings. The first ping takes more time 

because path has to be set up at switches and Linux bridges 

execute it partially in user space. 

implementation has been chosen because it was simpler to 

code in order to prove the concept

on performance. Disconnecting a link from

activates path reconfiguration

obviously, the alternative and longer two

third bridge, with a bit longer delay as a result of the 

additional hop. After path repair and link reconnection, the 

original path is only reselected if there i

path. To show video connectivity performance, the 

are configured respectively as video server and client by using 

Videolan (VLC), where S is transmitting via HTTP to H. 

When a cable is unplugged, the path reconfiguration is 

visually verified through video reception which is very shortly 

interrupted and, later, recovered.

Figure 3. ARP Path Switches (

Figure 4. ARP-Path Switches network 

Most of the reconfiguration 

failure detection and by the processing of 

establish the new path, performed in user space, instead of in 

the Linux kernel. Reconfiguration time is 

with Soekris boards at 500 Mhz speed

powerful processors. When the path is already established, 

ping round trip time is 900 microseconds

B. 1 Gbit/s OpenFlow/NetFPGA implementation

After implementing ARP-

implementation at 1 Gbit/s link 

pure NetFPGA implementation 

wo of these switches are connected 

), and the third switch is connected to 

Fast Ethernet connection.  

ath establishment between H and S is continuously 

monitored with repetitive pings. The first ping takes more time 

because path has to be set up at switches and Linux bridges 

execute it partially in user space. The partial user space 

chosen because it was simpler to 

in order to prove the concept, despite the possible impact 

Disconnecting a link from the path in use 

activates path reconfiguration. The new selected path is, 

obviously, the alternative and longer two-hop path via the 

third bridge, with a bit longer delay as a result of the 

After path repair and link reconnection, the 

original path is only reselected if there is a fail in the selected 

To show video connectivity performance, the two hosts 

respectively as video server and client by using 

Videolan (VLC), where S is transmitting via HTTP to H. 

When a cable is unplugged, the path reconfiguration is 

visually verified through video reception which is very shortly 

ted and, later, recovered.  

 
Linux impl.) 100 Mbps test network 

 

 

 
 

Switches network with Soekris (Linux) boards 

reconfiguration time is consumed by the link 

by the processing of ARP Request to 

performed in user space, instead of in 

econfiguration time is around 1070 ms. 

at 500 Mhz speed, half time with more 

When the path is already established, 

900 microseconds.   

/NetFPGA implementation 

-Path in Linux, a higher capacity 

s link speed was the objective. A 

implementation [8] would be advisable since, 



 

 

 

opposite to many other implementations using 

there is no intrinsic central function in the ARP

all switches are fully independent. But, taking into account

ease of protocol modification and the diversity

platforms, an implementation based in 

controlling NetFPGA switches was chosen. 

possible the validation across many platforms, 

fully virtualized networks to commercial switches 

compliant. Since OpenFlow specification does 

controller, we chose NOX [10]. It is important to remark that

in an OpenFlow setting, the implementation of the protocol 

resides in the controller, i.e., NOX. The 

defines the communication language between the switches and 

the controller, and the NetFPGA cards operate as

switches, but they are completely independent 

protocol implementation. Fig. 5 shows a 

network. 

 

 
Figure 5. Generic OpenFlow network: controller and

The controller part is identical in both 

the real implementation (with NetFPGA switches) and it is 

what really defines the behaviour of the ARP

NOX lets the user develop items in C++ and 

Path protocol has been written in Python. The ARP

module consists of several files, but just one defines the 

protocol logic, named “modswitch.py”. This file de

the rest of NOX modules, two important functions: 

“__init__”, which initializes the component, variables and 

logging (for later result analysis), and “

mainly registers switch events in the controller (such as 

receiving a frame, listening to port status changes, etc).

most important event registered is for packets coming in and it 

calls the function “handle_packet_in”, which owns almost 

the whole logic of the ARP-Path protocol. This function 

classifies broadcast, multicast and unicast frames in three 

different sections. The multicast section is 

Path multicast packets (specifically the ones needed for 

repairing paths), while the broadcast and unicast sections will 

look for ARP frames (in order to lock and confirm paths), 

which will create the associated learning tables, and other 

frames, which will be forwarded or discarded (if a broadcast 

needs to be blocked to avoid loops), or 

repairing method if the destination MAC address is not located 

in any table. 

implementations using OpenFlow, 

the ARP-Path protocol: 

But, taking into account the 

diversity of available 

, an implementation based in OpenFlow [9] 

was chosen. OpenFlow makes 

validation across many platforms, ranging from 

fully virtualized networks to commercial switches OpenFlow 

specification does not specify a 

controller, we chose NOX [10]. It is important to remark that, 

setting, the implementation of the protocol 

in the controller, i.e., NOX. The OpenFlow standard 

age between the switches and 

operate as OpenFlow 

switches, but they are completely independent from the 

Fig. 5 shows a generical OpenFlow 

 

and Openflow switches [9] 

both the virtualized and 

(with NetFPGA switches) and it is 

what really defines the behaviour of the ARP-Path protocol. 

evelop items in C++ and Python; ARP-

en in Python. The ARP-Path 

module consists of several files, but just one defines the 

This file describes, as 

the rest of NOX modules, two important functions: 

initializes the component, variables and 

logging (for later result analysis), and “install”, which 

mainly registers switch events in the controller (such as 

receiving a frame, listening to port status changes, etc). The 

or packets coming in and it 

”, which owns almost 

Path protocol. This function first 

classifies broadcast, multicast and unicast frames in three 

different sections. The multicast section is just used for ARP-

Path multicast packets (specifically the ones needed for 

repairing paths), while the broadcast and unicast sections will 

look for ARP frames (in order to lock and confirm paths), 

which will create the associated learning tables, and other 

mes, which will be forwarded or discarded (if a broadcast 

needs to be blocked to avoid loops), or will even start the 

repairing method if the destination MAC address is not located 

After developing the ARP

tests start. This module should be running in the controller that 

will tell the network switches to behave like ARP

switches. The first phase of the implementation d

require any NetFPGA hardware. The complete test 

environment can be virtualized 

NOX on a virtual machine. 

virtual machine for each PC (one for the controller and some 

more for each switch and host in the topology),

this is quite a tedious work. The alternative that was used in 

this virtual implementation was Mininet, an idea from the 

McKeown Group Wiki [11]

OpenFlow networks with virtual hosts, switches on a single 

PC, and is available at the wiki of the 

[9]. Although still an alpha release, it already is a powerful 

tool to easily test big networks. 

needed with Mininet, one for the NOX controller in which the 

ARP-Path protocol logic is executed

Mininet software, which simulate

be tested. Once this ARP-Path 

the NOX controller with a sentence like this  “

ptcp: modswitch”), it is possibl

switches in the topology (e.g. by running “
controller=remote 

port=CONTROLLER_PORT --custom TOPOLOGY_PATH 

mytopo” in Mininet or alternatively 

protocol in each of the switches of a real implementation).

In Fig. 6 the OpenFlow dialogue is shown. On the left, it is 

the Mininet virtual machine, whose network topology is 

defined by a simple Python file that describes hosts, switches 

and their links. On the right, the controller NOX owns the 

whole decision making process regarding packet processing 

rules, it is where the ARP-Path 

OpenFlow dialogue will be created between both machines. 

Initially, when Mininet is started and switches 

Later, the controller will listen to some previously registered 

events, such as “a new host has joined the netw

2 has received the following frame

instructions to some parts or the whole network, such as “that 

frame should be forwarded via eth0 from now on”

Figure 6: OpenFlow communication among NOX and the Mininet topolo

When the protocol has been

designed. The 1 Gbit/s test network is shown at figs. 

After developing the ARP-Path code at the controller, the 

This module should be running in the controller that 

will tell the network switches to behave like ARP-Path 

of the implementation does not 

require any NetFPGA hardware. The complete test 

environment can be virtualized by running OpenFlow and 

 One method would be using a 

virtual machine for each PC (one for the controller and some 

witch and host in the topology), nevertheless 

this is quite a tedious work. The alternative that was used in 

this virtual implementation was Mininet, an idea from the 

[11]. Mininet can create large 

networks with virtual hosts, switches on a single 

at the wiki of the OpenFlow Web page 

. Although still an alpha release, it already is a powerful 

tool to easily test big networks. Only two virtual machines are 

, one for the NOX controller in which the 

c is executed, and another one for the 

Mininet software, which simulates the different topologies to 

Path module is running (by starting 

the NOX controller with a sentence like this  “./nox_core -i 

”), it is possible to connect to it the different 

switches in the topology (e.g. by running “sudo mn --

--ip=CONTROLLER_IP --

custom TOPOLOGY_PATH --topo 

alternatively starting the OpenFlow 

e switches of a real implementation). 

dialogue is shown. On the left, it is 

virtual machine, whose network topology is 

defined by a simple Python file that describes hosts, switches 

and their links. On the right, the controller NOX owns the 

decision making process regarding packet processing 

Path protocol logic is defined. An 

dialogue will be created between both machines. 

when Mininet is started and switches power up. 

Later, the controller will listen to some previously registered 

a new host has joined the network” or “switch 

2 has received the following frame”, and will give different 

instructions to some parts or the whole network, such as “that 

frame should be forwarded via eth0 from now on” 

 
Figure 6: OpenFlow communication among NOX and the Mininet topology 

has been tested, the real deployment is 

The 1 Gbit/s test network is shown at figs. 7 and 8.  



 

 

 

Figure  7. Test network for OpenFlow/NetFPGA 1 Gbps

The network consists of a fully connected mesh of 4 

NetFPGAs (one per PC) acting as modified 

switches, with one central OpenFlow

implements the ARP-Path logic for every switch. Connectivity 

test and path reconfiguration after link failure were performed 

as for Linux demo with repetitive pings. 

configured as video servers and also connected as cl

Videolan and to video webs via http. All network links were 

connected and active at the same time and shortest (direct in 

this case) paths were selected. Paths were monitored by 

displaying the log of the NOX controller. 

set up time with repetitive pings between source and 

destination was 40-50 ms (if the MAC address is not

in the table at the ARP-Path switches). Path reconfiguration 

after unplugging a link cable takes 40-50 ms after link failure 

detection (opposite to Linux implementation, link failure 

detection is not yet available in the NetFPGA version used, so 

a timeout was used to detect link failure). Once the path is 

established, it takes only 0.5 msec for a ping round

ARP stress tests show handling of ARP Request rates of up to 

1000 ARPs per second, by using the arp-sk

 
Figure 8.  OpenFlow/NetFPGAs network 

 
/NetFPGA 1 Gbps 

The network consists of a fully connected mesh of 4 

NetFPGAs (one per PC) acting as modified OpenFlow 

enFlow controller that 

Path logic for every switch. Connectivity 

test and path reconfiguration after link failure were performed 

as for Linux demo with repetitive pings.  Hosts were 

configured as video servers and also connected as clients with 

n and to video webs via http. All network links were 

connected and active at the same time and shortest (direct in 

this case) paths were selected. Paths were monitored by 

displaying the log of the NOX controller. The measured path 

me with repetitive pings between source and 

50 ms (if the MAC address is not already 

Path switches). Path reconfiguration 

50 ms after link failure 

detection (opposite to Linux implementation, link failure 

detection is not yet available in the NetFPGA version used, so 

was used to detect link failure). Once the path is 

established, it takes only 0.5 msec for a ping round-trip time.  

ARP stress tests show handling of ARP Request rates of up to 

sk tool. 

 

network set up  

C. 100 Mbit/s  OpenFlow implementation

Another tested scenario was a mixture of the two described 

above. We installed OpenFlow in three 

then used the same code we had implemented for the 

OpenFlow/NetFPGA setting in them

is possible thanks to the OpenFlow arch

testing a protocol over any compatible device. Soekris boards 

are internally specialized PC 

is possible to install OpenFlow o

PC, connected via Ethernet, as the controller

us similar advantages of the OpenFlow/NetFPGA 

implementation (such as the easy reconfiguration o

protocol, which just means changing the controller code 

instead of installing every single board)

and easier to configure scenario. 

installed in each Soekris board, we used again 

controller installed in a lapto

Soekris boards remain as they were described in Linux 

implementation section, creating a triangle topology, with 

hosts attached to the switches.

to test ping connection, and also HT

between hosts, and Internet connection through an Ethe

link connected to another Soekris board.

Figure  9. Test network for 

D. Comparison 

 Although every proposed test worked well in each scenario 

(there were no problems with ICMP packets, video streaming 

or Internet connection, including auto

DHCP), there were some differences in performance measures 

for each one. These differences are visible in ping RTT

(Round Trip Time) results.  In 

was an average RTT of 798 microseconds (without taking 

starting time into account, when the path is being created). 

the OpenFlow/NetFPGA implementation, this time decreased 

implementation on Soekris boards. 

Another tested scenario was a mixture of the two described 

above. We installed OpenFlow in three Soekris boards, and 

then used the same code we had implemented for the 

etting in them as shown in fig. 9. This 

OpenFlow architecture, which allows 

testing a protocol over any compatible device. Soekris boards 

are internally specialized PC boards with Linux installed, so it 

s possible to install OpenFlow on them and then use another 

as the controller. This set-up gave 

advantages of the OpenFlow/NetFPGA 

(such as the easy reconfiguration of the 

protocol, which just means changing the controller code 

instead of installing every single board), but in a more portable 

and easier to configure scenario.  Once Openflow was 

installed in each Soekris board, we used again the NOX 

d in a laptop. The connections between the 

oekris boards remain as they were described in Linux 

implementation section, creating a triangle topology, with 

hosts attached to the switches.  With this set-up we were able 

to test ping connection, and also HTTP video streaming 

between hosts, and Internet connection through an Ethernet 

oekris board. 

 
Test network for OpenFlow/Soekris 100 Mbps  

Although every proposed test worked well in each scenario 

(there were no problems with ICMP packets, video streaming 

or Internet connection, including auto configuration via 

DHCP), there were some differences in performance measures 

erences are visible in ping RTT 

In the Linux implementation, there 

was an average RTT of 798 microseconds (without taking the 

hen the path is being created). In 

implementation, this time decreased 



 

 

 

to 627 microseconds. The difference between both values is 

understandable knowing that the first one is running part of 

the protocol in user space, while the NetFPGAs implement 

OpenFlow as a hardware project. In OpenFlow/Soekris, 

OpenFlow is installed as an application in user space, instead 

of using a hardware programmed device (like NetFPGAs), and 

this clearly has a negative influence in performance. The 

average RTT is 2,82 miliseconds, a higher value than the other 

two, as expected. The more realistic value of these options is 

the 627 microseconds obtained from the Openflow/NetFPGA 

implementation. Comparing this value with the average RTT 

by using Spanning Tree Protocol with OpenFlow and 

NetFPGAs, we get similar values (612 microseconds for STP), 

which is reasonable considering the size of the topology (the 

implementations were prepared to test the protocol itself and 

were not so focused on the performance). 

IV. ACKNOWLEDGMENT 

This work was supported in part by grants from Comunidad 

de Madrid and Comunidad de Castilla la Mancha through 

Projects MEDIANET-CM (S-2009/TIC-1468), EMARECE 

(PII1I09-0204-4319) and T2C2(TIN2008-06739-C04-04). 

V. CONCLUSION 

ARP Path is a simple and efficient protocol low latency 

transparent bridges, currently under active development and 

optimization, suitable for enterprise networks and data center 

networks. The success and robustness proved with the 

different implementations are a strong proof of concept, which 

show the protocol behavior under real applications like video 

streaming or Internet access. Each implementation has some 

advantages and disadvantages, and can be used for different 

purposes. For example, the Linux implementation is the 

simplest one, in terms of configuration, but it is not the most 

realistic in measurement. Also, every change made in the 

code, needs to be recompiled in each device individually. The 

OpenFlow implementations do not have that problem, as 

everything is managed by a centralized controller. In fact, 

using NetFPGAs with OpenFlow gives us a very realistic set-

up. The main problem with the OpenFlow/NetFPGA approach 

is that is not an easily transportable model, so is not very 

suitable for demonstration purposes. That is where the 

OpenFlow/Soekris configuration is better, because that 

scenario is easy to move, and it gives a good demonstration 

model. The problem with it, comes with the worse 

performance derived from the lack of OpenFlow hardware 

integration in the Soekris boards. A pure NetFPGA 

implementation is ongoing. 

VI. REFERENCES 

[1] IEEE 802.1D-2004 IEEE standard for local and metropolitan area 

networks-Media access control (MAC) Bridges. Available online: 

standards. ieee.org/getieee802 /802.1.html.  

[2] M. Seaman. Shortest Path Bridging. Available online: ieee802.org/ 

1/files/public/docs2005/new-seaman-shortestpath-par-0405-02.htm.  

[3] Transparent interconnection of lots of links (TRILL) WG. Available on 

line at: ietf.org/html. charters/trill-charter.html 

[4] Ibanez G. et al. ARP-Path Ethernet Switching: On-demand Efficient 

Transparent Bridges for Data Center and Campus Networks. LANMAN 

May 2010. Available on line at: hdl.handle.net/10017/6298 

[5] Elmeleegy, Khaled and Cox, Alan L. EtherProxy: Scaling The Ethernet 

By Suppressing Broadcast Traffic. Proceedings of IEEE INFOCOM 

2009, Rio de Janeiro, Brazil. 

[6] Omnet Simulatior. Available on line: omnetpp.org 

[7] NRS Reference Networks. Available on line at: ibcn.intec.ugent.be/ 

INTERNAL/NRS/index.html 

[8] NetFPGA: netfpga.org 

[9] Openflow: openflowswitch.org 

[10] Ebtables: http://ebtables.sourceforge.net 

[11] McKeown Group Wiki:  

http://www.openflowswitch.org/foswiki/bin/view/Main/WebHome 

                  

 

 

 

 

 
 

 

 

 


